Powered by The Doe Report



or
Search Language
Browse
Medical Illustrations
Medical Exhibits
Medical Animations
Medical Animation Titles
Medical Encyclopedia
Most Recent Uploads
Body Systems/Regions
Anatomy & Physiology
Diseases & Conditions
Diagnostics & Surgery
Cells & Tissues
Cardiovascular System
Digestive System
Integumentary System
Nervous System
Reproductive System
Respiratory System
Back and Spine
Foot and Ankle
Head and Neck
Hip
Knee
Shoulder
Thorax
Medical Specialties
Cancer
Cardiology
Dentistry
Editorial
Neurology/Neurosurgery
Ob/Gyn
Orthopedics
Pediatrics
Account
Administrator Login
 
3/29/24

Biology: Chemistry in Biology: 13: Overview of Organic Compounds - Medical Animation

 

This animation may only be used in support of a single legal proceeding and for no other purpose. Read our License Agreement for details. To license this image for other purposes, click here.

Ready to License?

Item #NSV16027 — Source #1344

Order by phone: (800) 338-5954

Biology: Chemistry in Biology: 13: Overview of Organic Compounds - Medical Animation
MEDICAL ANIMATION TRANSCRIPT: Today, we are going to be talking about organic compounds. Organic compounds are studied in biology because they are found in all living things. All organic compounds have the element carbon in them. In other words, all living organisms contain carbon. What's so special about the element, carbon? For one thing, no other element matches carbon's unique versatility to bond with other elements. Let's look at why this is true. For starters, carbon has an atomic number of six. That means that every atom of carbon has six protons in the nucleus. As an electrically neutral atom, carbon also has six electrons. Two core electrons are in the first energy level, which means it has four remaining valence electrons in the second energy level. Remember, valence electrons are those electrons available for bonding with other atoms. Accompanying these four electrons are four bonding sites, or four places that carbon can form bonds with other carbon atoms, or with atoms of other elements. Carbon's four valence electrons and four bonding sites allow it to form strong covalent bonds with many other elements, including hydrogen, oxygen, nitrogen, and phosphorus. Another feature of carbon atoms is they often form covalent bonds with other carbon atoms, to a nearly unlimited degree. This means that two carbon atoms can bond to one another, 50 carbon atoms can bond to one another, or even hundreds of carbon atoms can bond to one another. The ability of carbon atoms to bond to one another gives it the unique ability to shorten or lengthen a chain of carbon atoms to meet the very demands of the chemistry of life. So what kinds of molecules can carbon form? Well, small organic molecules called monomers are chemically bonded atoms that always include carbon. In addition to carbon, organic monomers usually contain hydrogen and oxygen, possibly along with nitrogen or phosphorus. Organic monomers often chemically bond to each other, joining together like beads on a string. This string of attached monomers will often continue to chemically bond with additional monomers, creating a much larger molecule, called a polymer. This process is called polymerization. Polymers may be made of different monomers or repeating units of the same monomer. Many organic polymers in the cells of living organisms are such large molecules that they're often referred to as macromolecules. DNA is an example of a macromolecule. Macro molecules can contain hundreds or even thousands of atoms. The four types of organic macromolecules are carbohydrates, lipids, proteins, and nucleic acids. Although they are all very large molecules, each type of organic macromolecule is distinct and different from the others. We'll discuss these four types of macromolecules in more detail separately. To sum up, organic compounds are found in all living things. All organic compounds contain the element carbon. Carbon atoms have a unique ability to bond to other carbon atoms, as well as other elements, such as hydrogen, oxygen, nitrogen, and phosphorus. Organic monomers are chemically bonded atoms that always include carbon. Polymerization is the process of creating long molecules, called polymers, from multiple bonded monomers. And macromolecules are very large organic molecules. [music]

YOU MAY ALSO WANT TO REVIEW THESE ITEMS:
Biology: Chemistry in Biology: 05: Overview of Chemical Bonds
Biology: Chemistry in Biology: 05: Overview of Chemical Bonds - NSV16020
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 04: Chemical Compounds
Biology: Chemistry in Biology: 04: Chemical Compounds - NSV15015
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 11: pH
Biology: Chemistry in Biology: 11: pH - NSV16024
Medical Animation
Add to my lightbox
Find More Like This
Biology: Chemistry in Biology: 01: Atoms
Biology: Chemistry in Biology: 01: Atoms - NSV15010
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 02: Structure - Overview of Cell Boundaries
Biology: The Cell: 02: Structure - Overview of Cell Boundaries - NSV15002
Medical Animation
Add to my lightbox
Find More Like This
Biology: The Cell: 01: Structure - Overview of Cell Structure
Biology: The Cell: 01: Structure - Overview of Cell Structure - NSV15001
Medical Animation
Add to my lightbox
Find More Like This
What attorneys say about MLA and The Doe Report:
"Medical Legal Art wins our firm's highest accolades for professionalism and exhibit quality. In fact, many of the doctors I work with request color copies of your outstanding artwork to show to patients during the informed consent process."

Jeanne Dolan, BSRN, AlNC
Legal Nurse Consultant
Golden Valley, MN

"I wanted to take some time out to let you know what a wonderful job you did with the 'collapsed lung/fractured rib' illustrations. They were both detailed and accurate. My medical expert was comfortable working with them and he spent at least an hour explaining to the jury the anatomy of the lungs, the ribs and the injuries depicted in the illustrations. Needless to say, the jury was riveted to the doctor during his testimony.

The jury returned a verdict for $800,000.00 and I'm sure we would not have done so well if not for the visualizations we were able to put forth with your assistance. Lastly, my special thanks to Alice [Senior Medical Illustrator] who stayed late on Friday night and patiently dealt with my last minute revisions."

Daniel J. Costello
Proner & Proner
New York, NY

"It is with great enthusiasm that I recommend Medical Legal Art. We have used their services for three years and always found their professionalism, quality of work, and timely attention to detail to exceed our expectations. We recently settled two complicated catastrophic injury cases. One medical malpractice case involving a spinal abscess settled for 3.75 million and the other involving injuries related to a motor vehicle accident settled for 6.9 million. We consider the artwork provided by MLA to have been invaluable in helping us to successfully conclude these cases.

I highly recommend MLA to anyone seeking high quality, detailed medical legal artwork."

E. Marcus Davis, Esq.
Davis Zipperman, Krischenbaum & Lotito
Atlanta, GA
www.emarcusdavis.com

"Thank you for the splendid medical-legal art work you did for us in the case of a young girl who was blinded by a bb pellet. As a result of your graphic illustrations of this tragic injury, we were able to persuade the insurance company to increase their initial offer of $75,000.00 to $475,000.00, just short of their policy limits.

We simply wanted you to know how pleased we were with your work which, to repeat, was of superlative character, and to let you know that we would be more than willing to serve as a reference in case you ever need one. Many thanks for an extraordinary and dramatic depiction of a very serious injury which clearly "catapulted" the insurance company's offer to a "full and fair" amount to settle this case."

Philip C. Coulter
Coulter &Coulter
Roanoke, VA

Medical Legal Blog |Find a Lawyer | Hospital Marketing